Mastering TensorFlow for Large Language Models: A Comprehensive Guide

Large Language Models (LLMs) like GPT-2 and BERT have revolutionized natural language processing, and TensorFlow provides powerful tools to build, train, and deploy them. This detailed guide walks you through using TensorFlow and Keras for LLMs—from basics to advanced transformer architectures, fine-tuning pipelines, and on-device deployment.[1][2][4] Whether you’re prototyping a sentiment analyzer or fine-tuning GPT-2 for custom tasks, TensorFlow’s high-level Keras API simplifies complex workflows while offering low-level control for optimization.[1][2] ...

January 6, 2026 · 5 min · 890 words · martinuke0

Scaling Vector Search in PostgreSQL with pgvectorscale: A Detailed Guide

Vector search in PostgreSQL has gone from “experimental hack” to a serious production option, largely thanks to the pgvector extension. But as teams push from thousands to tens or hundreds of millions of embeddings, a natural question emerges: How do you keep vector search fast and cost‑effective as the dataset grows, without adding yet another external database? This is exactly the problem pgvectorscale is designed to address. In this article, we’ll take a detailed look at pgvectorscale: what it is, how it fits into the Postgres ecosystem, how it scales vector search, and what trade‑offs you should understand before using it. ...

January 6, 2026 · 16 min · 3373 words · martinuke0

Ray for LLMs: Zero to Hero – Master Scalable LLM Workflows

Large Language Models (LLMs) power everything from chatbots to code generation, but scaling them for training, fine-tuning, and inference demands distributed computing expertise. Ray, an open-source framework, simplifies this with libraries like Ray LLM, Ray Serve, Ray Train, and Ray Data, enabling efficient handling of massive workloads across GPU clusters.[1][5] This guide takes you from zero knowledge to hero status, covering installation, core concepts, hands-on examples, and production deployment. What is Ray and Why Use It for LLMs? Ray is a unified framework for scaling AI and Python workloads, eliminating the need for multiple tools across your ML pipeline.[5] For LLMs, Ray LLM builds on Ray to optimize training and serving through distributed execution, model parallelism, and high-performance inference.[1] ...

January 6, 2026 · 4 min · 787 words · martinuke0

Machine Learning for LLMs: Zero to Hero – Your Complete Roadmap with Resources

Large Language Models (LLMs) power tools like ChatGPT, revolutionizing how we interact with AI. This zero-to-hero guide takes you from foundational machine learning concepts to building, fine-tuning, and deploying LLMs, with curated link resources for hands-on learning.[1][2][3] Whether you’re a beginner with basic Python skills or an intermediate learner aiming for expertise, this post provides a structured path. We’ll cover theory, practical implementations, and pitfalls, drawing from top courses and tutorials. ...

January 6, 2026 · 4 min · 826 words · martinuke0

Deep Learning from Zero to Hero for Large Language Models

Table of Contents Introduction Part 1: Mathematical Foundations Part 2: Neural Network Fundamentals Part 3: Understanding Transformers Part 4: Large Language Models Explained Part 5: Training and Fine-Tuning LLMs Part 6: Practical Implementation Resources and Learning Paths Conclusion Introduction The rise of Large Language Models (LLMs) has revolutionized artificial intelligence and natural language processing. From ChatGPT to Claude to Gemini, these powerful systems can understand context, generate human-like text, and solve complex problems across domains. But how do they work? And more importantly, how can you learn to build them from scratch? ...

January 6, 2026 · 11 min · 2251 words · martinuke0
Feedback