Google’s Gemini Cookbook is your ultimate hands-on guide to mastering the Gemini API. This official collection of Jupyter notebooks and quickstarts transforms beginners into production-ready developers by providing structured, copy-paste-ready examples for text generation, embeddings, function calling, streaming, multimodal inputs, and structured outputs.
Whether you’re building chatbots, RAG systems, or multimodal apps, the Cookbook equips you with battle-tested patterns used by Google’s AI engineers.
What is the Gemini Cookbook?
The Gemini Cookbook is an official GitHub repository (google-gemini/cookbook) maintained by Google, featuring 50+ Jupyter notebooks organized into quickstarts and examples. It covers every major Gemini API capability with complete, runnable code.
Key structure:
cookbook/
├── quickstarts/ # Foundational 5-minute tutorials
├── examples/ # Advanced real-world patterns
└── README.md # Navigation + API keys setup
Why it’s essential:
- Production-ready code: Direct from Google engineers, optimized for scale
- Multimodal focus: Images, audio, video + text in single APIs
- Battle-tested patterns: Function calling, grounding, safety settings
- Zero setup: Colab-ready notebooks with one-click API key integration
Quickstart: Get Your API Key (2 Minutes)
- Visit ai.google.dev → Get API key
- Open any Cookbook notebook in Colab
- Paste your key:
import google.generativeai as genai; genai.configure(api_key="YOUR_KEY")
import google.generativeai as genai
genai.configure(api_key="your_api_key_here")
model = genai.GenerativeModel('gemini-1.5-flash')
1. Text Generation: Your First Prompt
Python SDK (from Cookbook quickstarts):
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content("Write a haiku about machine learning")
print(response.text)
REST API equivalent:
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$API_KEY \
-H 'Content-Type: application/json' \
-d '{
"contents": [{ "parts":[{ "text": "Write a haiku about machine learning"
}]
}]
}'
Pro prompting tip: Always specify format - “Respond as JSON with keys: title, summary, keywords”
2. Embeddings: Power Your RAG Pipeline
Gemini embeddings (gemini-embedding-001) generate 3072D vectors optimized for retrieval, clustering, and semantic search.[1]
Batch embeddings (process 1000s efficiently):
result = genai.embed_content(
model="models/embedding-001",
content=["What is AI?", "Machine learning basics"],
task_type="RETRIEVAL_DOCUMENT"
)
embeddings = [e['embedding'] for e in result['embedding']]
REST:
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-embedding-001:embedContent?key=$API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"content": {"parts":[{"text": "What is AI?"}]},
"taskType": "RETRIEVAL_DOCUMENT"
}'
Best practice: Use task_type="RETRIEVAL_QUERY" for search queries, "RETRIEVAL_DOCUMENT" for docs.[1]
3. Function Calling: Build Agentic Workflows
Gemini excels at structured function calling - define tools, Gemini decides when/how to call them.
Cookbook example (weather agent):
def get_weather(city):
return f"Weather in {city}: 72°F, sunny"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools='get_weather'
)
response = model.generate_content("What's the weather in San Francisco?")
# Gemini automatically calls get_weather("San Francisco")
Full REST implementation:
{
"contents": [{"parts": [{"text": "Weather in NYC?"}]}],
"tools": [{ "functionDeclarations": [{ "name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"properties": {"city": {"type": "string"}}
}
}]
}]
}
Pitfall: Always include required: ["city"] in parameters schema.
4. Streaming: Real-Time Chat UX
Stream responses token-by-token for chat-like responsiveness:
response = model.generate_content("Tell a story", stream=True)
for chunk in response:
print(chunk.text, end='', flush=True)
REST streaming:
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?key=$API_KEY" \
-H 'Content-Type: application/json' \
-d '{"contents":[{"parts":[{"text":"Write a story"}]}]}'
5. Multimodal Magic: Images + Audio + Video
Gemini 1.5 processes 1M+ tokens across modalities natively.
Image analysis:
img = genai.upload_file("chart.png")
response = model.generate_content(["Analyze this sales chart", img])
Audio transcription + reasoning:
audio = genai.upload_file("meeting.mp3")
response = model.generate_content([ "Transcribe this meeting and extract action items:", audio
])
Video understanding:
video = genai.upload_file("demo.mp4")
response = model.generate_content([ "Summarize key moments in 30s:", video
])
REST multimodal:
{
"contents": [{ "parts": [ {"text": "What's in this image?"},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": "base64_encoded_image"
}
}
]
}]
}
6. Structured Outputs: JSON Guaranteed
Force JSON responses with response_mime_type="application/json":
model = genai.GenerativeModel(
'gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": {
"type": "object",
"properties": {
"title": {"type": "string"},
"summary": {"type": "string"}
}
}
}
)
response = model.generate_content("Analyze this article")
import json
result = json.loads(response.text)
System Instructions: Consistent AI Personas
Define behavior once, reuse everywhere:
model = genai.GenerativeModel(
'gemini-1.5-flash',
system_instruction="""
You are a helpful coding assistant. Always respond with:
1. Working code
2. Explanation
3. Tests
Format as markdown.
"""
)
Common Pitfalls & Pro Tips
❌ Pitfalls
- Rate limits: 60 RPM free tier → Use batching + exponential backoff
- Context overflow: 1M tokens ≠ free lunch → Chunk strategically
- No safety settings: Enable
block_nsfw/harassmentfor production - Missing error handling: Always wrap in try/catch
✅ Best Practices
# Production template
model = genai.GenerativeModel(
'gemini-1.5-pro',
system_instruction=SYSTEM_PROMPT,
generation_config={
'temperature': 0.1, # Deterministic for tools
'top_p': 0.95,
'max_output_tokens': 2048
},
safety_settings={
'HARM_CATEGORY_HARASSMENT': 'BLOCK_MEDIUM_AND_ABOVE'
}
)
Scaling tips:
- Async batching: Process 1000s via
client.batch_embed_contents() - Vertex AI: Enterprise → Use for higher quotas + fine-tuning
- Caching: Redis for embeddings, deterministic prompts
- Monitoring: Track
usageMetadatafor cost optimization
Building Your First Production App: RAG Chatbot
Complete example combining everything:
import google.generativeai as genai
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# 1. Embed your docs
docs = ["Gemini is multimodal", "API supports function calling"]
doc_embeds = genai.embed_content(model="embedding-001", content=docs)
# 2. Query embedding + similarity search
query = "Does Gemini do tools?"
query_embed = genai.embed_content(model="embedding-001", content=[query])
scores = cosine_similarity([query_embed['embedding']], doc_embeds)
# 3. Rerank + context
top_docs = [docs[np.argmax(scores)]]
# 4. Multimodal RAG query
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([ f"Context: {top_docs}\n\nUser: {query}"
])
Top 10 Authoritative Gemini Cookbook Resources
- Official Gemini Cookbook GitHub - 50+ notebooks, quickstarts, examples
- Google AI Developers Cookbook - Web version + latest updates
- Gemini TS Cookbook - TypeScript quickstarts
- Get Started Notebook - 2-minute setup
- System Instructions Guide - Persona engineering
- Function Calling Example - Tool integration
- Info Extraction Patterns - Structured parsing
- Audio Processing Quickstart - Speech-to-insights
- Vertex AI Cookbook - Enterprise deployment
- Official Gemini API Docs - Complete reference
Next Steps: From Tutorial to Production
- Fork the Cookbook → Customize notebooks for your use case
- Build 3 apps: Chatbot, RAG search, multimodal analyzer
- Deploy to Vertex AI → Scale + compliance
- Join community: Google AI Dev Discord + GitHub issues
The Gemini Cookbook isn’t just documentation—it’s a production engineering playbook. Start with “Get Started.ipynb” today and ship your first Gemini app by EOD.
Ready to build? Open this notebook in Colab now.