Table of Contents
- Introduction: What is Magentic UI?
- Understanding the Core Concepts
- Setting Up Your Development Environment
- Project 1: AI-Powered Task Manager
- Project 2: Smart Content Generator
- Project 3: Conversational Data Explorer
- Advanced Patterns and Best Practices
- Integration with AI Services
- Production Deployment
- Resources and Further Learning
Introduction: What is Magentic UI?
Magentic UI is an experimental framework from Microsoft Research that represents a paradigm shift in how we build human-AI collaborative interfaces. Instead of traditional UI where humans click buttons and fill forms, Magentic UI creates conversational, adaptive interfaces where AI and humans work together as partners.
The Problem with Traditional UI
Think about traditional web applications:
- Static interfaces: Fixed layouts, predefined workflows
- Human-driven: Users must learn the interface
- Limited flexibility: Can’t adapt to user context or needs
- High cognitive load: Users must navigate complex menus and forms
The Magentic UI Solution
Magentic UI flips this model:
- Dynamic interfaces: UI components generated on-demand
- AI-human partnership: AI suggests, humans approve/modify
- Context-aware: Adapts to user intent and situation
- Natural interaction: Conversational, intuitive workflows
The Mental Model: Imagine having a smart assistant that not only understands what you want but also creates the perfect interface for you to accomplish it, right when you need it.
Why Magentic UI Matters
- Reduced Learning Curve: No complex UIs to learn
- Increased Productivity: AI handles repetitive tasks
- Better Accessibility: Adapts to different user abilities
- Future-Proof: Works with any AI model or service
- Developer Efficiency: Less boilerplate UI code
Understanding the Core Concepts
1. Agents and Capabilities
In Magentic UI, agents are AI entities that can perform specific tasks:
// Example agent definition
const taskAgent = {
name: 'TaskManager',
capabilities: [
'create_task',
'list_tasks',
'update_task',
'delete_task',
'search_tasks'
],
model: 'gpt-4',
context: 'task_management'
}
Capabilities define what an agent can do:
- Actions: Specific functions the agent can execute
- Knowledge: Domain expertise and data access
- Interface: How the agent presents information
2. UI Generation and Rendering
Magentic UI dynamically generates UI components based on:
- Agent capabilities: What actions are available
- User context: Current task and preferences
- Conversation state: What has been discussed
- Data requirements: What information is needed
// Dynamic UI generation
const uiComponents = await magenticUI.generateInterface({
agent: taskAgent,
context: userContext,
intent: 'create_new_task'
})
// Returns: React components, forms, buttons, etc.
3. Conversation Flow
The interaction follows a natural conversation pattern:
- User expresses intent (natural language)
- AI clarifies requirements (asks questions)
- AI generates UI (appropriate components)
- User interacts (completes the task)
- AI processes results (takes action)
4. State Management
Magentic UI maintains:
- Conversation history: Context for ongoing interactions
- Application state: Current data and UI state
- User preferences: Personalization and settings
- Agent memory: What has been accomplished
Setting Up Your Development Environment
Prerequisites
# Node.js 16+ required
node --version # Should be v16.0.0 or higher
# npm or yarn
npm --version
Installing Magentic UI
# Create new project
npx create-react-app magentic-ui-demo
cd magentic-ui-demo
# Install Magentic UI
npm install @microsoft/magentic-ui
npm install @microsoft/magentic-ui-react
# Install dependencies
npm install openai
npm install @tanstack/react-query
npm install tailwindcss
npm install lucide-react
Basic Configuration
Create src/magenticConfig.js:
import { MagenticUIConfig } from '@microsoft/magentic-ui'
export const magenticConfig = new MagenticUIConfig({
// AI service configuration
aiProvider: {
type: 'openai',
apiKey: process.env.REACT_APP_OPENAI_API_KEY,
model: 'gpt-4-turbo-preview',
temperature: 0.7,
maxTokens: 2000
},
// UI generation settings
uiGeneration: {
framework: 'react',
styling: 'tailwind',
componentLibrary: 'lucide',
adaptiveLayout: true
},
// Agent configuration
agents: {
defaultModel: 'gpt-4-turbo-preview',
maxConcurrent: 3,
timeoutMs: 30000
},
// Conversation settings
conversation: {
maxHistoryLength: 50,
contextWindow: 10000,
enableMemory: true
}
})
Environment Setup
Create .env.local:
# OpenAI API Key
REACT_APP_OPENAI_API_KEY=your_openai_api_key_here
# Optional: Custom backend URL
REACT_APP_MAGENTIC_BACKEND_URL=http://localhost:3001
# Development settings
REACT_APP_DEBUG_MAGENTIC_UI=true
REACT_APP_ENABLE_CONVERSATION_LOG=true
Basic App Structure
Update src/App.js:
import React from 'react'
import { MagenticProvider } from '@microsoft/magentic-ui-react'
import { magenticConfig } from './magenticConfig'
import './index.css'
function App() {
return (
<MagenticProvider config={magenticConfig}>
<div className="min-h-screen bg-gray-50">
<header className="bg-white shadow-sm border-b">
<div className="max-w-7xl mx-auto px-4 py-4">
<h1 className="text-2xl font-bold text-gray-900">
Magentic UI Demo
</h1>
</div>
</header>
<main className="max-w-7xl mx-auto px-4 py-8">
{/* Your Magentic UI components will go here */}
</main>
</div>
</MagenticProvider>
)
}
export default App
Project 1: AI-Powered Task Manager
Let’s build a task manager where users can create, manage, and organize tasks through natural conversation.
Step 1: Define the Task Agent
Create src/agents/TaskAgent.js:
import { Agent } from '@microsoft/magentic-ui'
export const taskAgent = new Agent({
name: 'TaskManager',
description: 'Manages tasks, projects, and productivity workflows',
capabilities: [
{
name: 'createTask',
description: 'Create a new task with title, description, priority, and due date',
parameters: {
title: { type: 'string', required: true },
description: { type: 'string', required: false },
priority: { type: 'enum', options: ['low', 'medium', 'high'], default: 'medium' },
dueDate: { type: 'date', required: false },
category: { type: 'string', required: false }
}
},
{
name: 'listTasks',
description: 'List tasks with optional filtering',
parameters: {
status: { type: 'enum', options: ['all', 'pending', 'completed'], default: 'all' },
category: { type: 'string', required: false },
priority: { type: 'enum', options: ['low', 'medium', 'high'], required: false }
}
},
{
name: 'updateTask',
description: 'Update an existing task',
parameters: {
taskId: { type: 'string', required: true },
updates: { type: 'object', required: true }
}
},
{
name: 'deleteTask',
description: 'Delete a task',
parameters: {
taskId: { type: 'string', required: true }
}
},
{
name: 'searchTasks',
description: 'Search tasks by content',
parameters: {
query: { type: 'string', required: true },
limit: { type: 'number', default: 10 }
}
}
],
// Data source
dataSource: {
type: 'localStorage',
key: 'tasks',
schema: {
id: 'string',
title: 'string',
description: 'string',
status: 'enum:pending,completed',
priority: 'enum:low,medium,high',
category: 'string',
createdAt: 'date',
dueDate: 'date',
updatedAt: 'date'
}
},
// UI preferences
uiPreferences: {
layout: 'kanban-board',
defaultView: 'board',
enableDragDrop: true,
showProgress: true
}
})
Step 2: Create Task Manager Component
Create src/components/TaskManager.js:
import React, { useState, useEffect } from 'react'
import { useMagenticUI } from '@microsoft/magentic-ui-react'
import { taskAgent } from '../agents/TaskAgent'
import TaskBoard from './TaskBoard'
import ConversationInterface from './ConversationInterface'
function TaskManager() {
const [tasks, setTasks] = useState([])
const [currentView, setCurrentView] = useState('board')
const {
startConversation,
generateInterface,
executeCapability,
conversation
} = useMagenticUI()
// Load tasks from localStorage on mount
useEffect(() => {
const savedTasks = localStorage.getItem('tasks')
if (savedTasks) {
setTasks(JSON.parse(savedTasks))
}
}, [])
// Save tasks to localStorage whenever they change
useEffect(() => {
localStorage.setItem('tasks', JSON.stringify(tasks))
}, [tasks])
// Handle task operations
const handleTaskOperation = async (operation, params) => {
try {
const result = await executeCapability(taskAgent, operation, params)
switch (operation) {
case 'createTask':
setTasks(prev => [...prev, { ...result, id: Date.now().toString() }])
break
case 'updateTask':
setTasks(prev => prev.map(task =>
task.id === params.taskId
? { ...task, ...params.updates, updatedAt: new Date() }
: task
))
break
case 'deleteTask':
setTasks(prev => prev.filter(task => task.id !== params.taskId))
break
case 'listTasks':
let filteredTasks = result
if (params.status !== 'all') {
filteredTasks = filteredTasks.filter(task => task.status === params.status)
}
setTasks(filteredTasks)
break
default:
console.log('Unknown operation:', operation)
}
return result
} catch (error) {
console.error('Task operation failed:', error)
throw error
}
}
// Start conversation with task agent
const startTaskConversation = async () => {
await startConversation(taskAgent, {
context: {
currentTasks: tasks,
taskCount: tasks.length,
pendingCount: tasks.filter(t => t.status === 'pending').length
},
greeting: "Hi! I'm your task management assistant. What would you like to accomplish today?",
suggestions: [
"Create a new task",
"Show me my pending tasks",
"Find high-priority tasks",
"Help me organize my week"
]
})
}
return (
<div className="flex h-screen">
{/* Main Task Interface */}
<div className="flex-1 p-6">
<div className="mb-6 flex justify-between items-center">
<h2 className="text-2xl font-bold text-gray-900">Task Manager</h2>
<div className="flex gap-2">
<button
onClick={() => setCurrentView('board')}
className={`px-4 py-2 rounded-lg font-medium ${
currentView === 'board'
? 'bg-blue-600 text-white'
: 'bg-gray-200 text-gray-700'
}`}
>
Board View
</button>
<button
onClick={() => setCurrentView('list')}
className={`px-4 py-2 rounded-lg font-medium ${
currentView === 'list'
? 'bg-blue-600 text-white'
: 'bg-gray-200 text-gray-700'
}`}
>
List View
</button>
<button
onClick={startTaskConversation}
className="px-4 py-2 bg-green-600 text-white rounded-lg font-medium hover:bg-green-700"
>
💬 AI Assistant
</button>
</div>
</div>
{/* Dynamic UI based on current view */}
{currentView === 'board' ? (
<TaskBoard tasks={tasks} onTaskUpdate={handleTaskOperation} />
) : (
<TaskList tasks={tasks} onTaskUpdate={handleTaskOperation} />
)}
</div>
{/* Conversation Interface */}
{conversation.isActive && (
<div className="w-96 border-l bg-gray-50">
<ConversationInterface
agent={taskAgent}
onExecuteAction={handleTaskOperation}
tasks={tasks}
/>
</div>
)}
</div>
)
}
export default TaskManager
Step 3: Create Conversation Interface
Create src/components/ConversationInterface.js:
import React, { useState, useRef, useEffect } from 'react'
import { useMagenticUI } from '@microsoft/magentic-ui-react'
import { Send, Bot, User, Sparkles } from 'lucide-react'
function ConversationInterface({ agent, onExecuteAction, tasks }) {
const [input, setInput] = useState('')
const [isTyping, setIsTyping] = useState(false)
const messagesEndRef = useRef(null)
const {
conversation,
sendMessage,
generatedUI,
executeCapability
} = useMagenticUI()
// Auto-scroll to bottom
useEffect(() => {
messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' })
}, [conversation.messages])
const handleSendMessage = async () => {
if (!input.trim()) return
const userMessage = {
type: 'user',
content: input,
timestamp: new Date()
}
setInput('')
setIsTyping(true)
try {
// Send message and get AI response
await sendMessage(input)
// Check if AI wants to execute a capability
if (conversation.lastMessage?.intent?.action) {
const { action, parameters } = conversation.lastMessage.intent
// Execute the action
await executeCapability(agent, action, parameters)
.then(result => {
// Send confirmation back to conversation
sendMessage(`I've ${action.replace(/([A-Z])/g, ' $1').toLowerCase()} the task successfully.`, 'system')
})
.catch(error => {
sendMessage(`Sorry, I encountered an error: ${error.message}`, 'error')
})
}
} catch (error) {
console.error('Conversation error:', error)
} finally {
setIsTyping(false)
}
}
const handleKeyPress = (e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault()
handleSendMessage()
}
}
const handleSuggestionClick = (suggestion) => {
setInput(suggestion)
}
return (
<div className="flex flex-col h-full">
{/* Header */}
<div className="p-4 border-b bg-white">
<div className="flex items-center gap-2">
<Bot className="w-5 h-5 text-blue-600" />
<h3 className="font-semibold text-gray-900">Task Assistant</h3>
</div>
<p className="text-sm text-gray-600 mt-1">
{agent.description}
</p>
</div>
{/* Messages */}
<div className="flex-1 overflow-y-auto p-4 space-y-4">
{conversation.messages.map((message, index) => (
<div key={index} className={`flex gap-3 ${
message.type === 'user' ? 'flex-row-reverse' : 'flex-row'
}`}>
<div className={`w-8 h-8 rounded-full flex items-center justify-center ${
message.type === 'user'
? 'bg-blue-600 text-white'
: 'bg-gray-200 text-gray-700'
}`}>
{message.type === 'user' ? (
<User className="w-4 h-4" />
) : (
<Bot className="w-4 h-4" />
)}
</div>
<div className={`max-w-[80%] rounded-lg p-3 ${
message.type === 'user'
? 'bg-blue-600 text-white'
: message.type === 'error'
? 'bg-red-100 text-red-800'
: 'bg-gray-100 text-gray-900'
}`}>
<p className="text-sm">{message.content}</p>
<span className="text-xs opacity-70 mt-1 block">
{new Date(message.timestamp).toLocaleTimeString()}
</span>
</div>
</div>
))}
{/* Generated UI Components */}
{generatedUI && (
<div className="bg-blue-50 border border-blue-200 rounded-lg p-4">
<div className="flex items-center gap-2 mb-3">
<Sparkles className="w-4 h-4 text-blue-600" />
<span className="text-sm font-medium text-blue-900">
Suggested Action
</span>
</div>
{generatedUI}
</div>
)}
{/* Typing indicator */}
{isTyping && (
<div className="flex gap-3">
<div className="w-8 h-8 rounded-full bg-gray-200 flex items-center justify-center">
<Bot className="w-4 h-4" />
</div>
<div className="bg-gray-100 rounded-lg p-3">
<div className="flex gap-1">
<div className="w-2 h-2 bg-gray-400 rounded-full animate-bounce" />
<div className="w-2 h-2 bg-gray-400 rounded-full animate-bounce" style={{ animationDelay: '0.1s' }} />
<div className="w-2 h-2 bg-gray-400 rounded-full animate-bounce" style={{ animationDelay: '0.2s' }} />
</div>
</div>
</div>
</div>
)}
<div ref={messagesEndRef} />
</div>
{/* Suggestions */}
{conversation.suggestions && conversation.suggestions.length > 0 && (
<div className="p-4 border-t bg-gray-50">
<p className="text-sm text-gray-600 mb-2">Suggested actions:</p>
<div className="flex flex-wrap gap-2">
{conversation.suggestions.map((suggestion, index) => (
<button
key={index}
onClick={() => handleSuggestionClick(suggestion)}
className="px-3 py-1 text-sm bg-white border border-gray-300 rounded-full hover:bg-gray-50"
>
{suggestion}
</button>
))}
</div>
</div>
)}
{/* Input */}
<div className="p-4 border-t bg-white">
<div className="flex gap-2">
<input
type="text"
value={input}
onChange={(e) => setInput(e.target.value)}
onKeyPress={handleKeyPress}
placeholder="Ask me anything about your tasks..."
className="flex-1 px-4 py-2 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500"
disabled={isTyping}
/>
<button
onClick={handleSendMessage}
disabled={!input.trim() || isTyping}
className="px-4 py-2 bg-blue-600 text-white rounded-lg hover:bg-blue-700 disabled:opacity-50 disabled:cursor-not-allowed"
>
<Send className="w-4 h-4" />
</button>
</div>
</div>
</div>
)
}
export default ConversationInterface
Step 4: Create Task Board Component
Create src/components/TaskBoard.js:
import React, { useState } from 'react'
import { Card, CardContent, CardHeader } from './ui/Card'
import { Badge } from './ui/Badge'
import { Calendar, Clock, Flag } from 'lucide-react'
function TaskBoard({ tasks, onTaskUpdate }) {
const [draggedTask, setDraggedTask] = useState(null)
const columns = [
{ id: 'pending', title: 'To Do', color: 'border-gray-300' },
{ id: 'in-progress', title: 'In Progress', color: 'border-blue-300' },
{ id: 'completed', title: 'Done', color: 'border-green-300' }
]
const getTasksByStatus = (status) => {
return tasks.filter(task => task.status === status)
}
const handleDragStart = (task) => {
setDraggedTask(task)
}
const handleDragOver = (e) => {
e.preventDefault()
}
const handleDrop = async (e, status) => {
e.preventDefault()
if (draggedTask && draggedTask.status !== status) {
await onTaskUpdate('updateTask', {
taskId: draggedTask.id,
updates: { status, updatedAt: new Date() }
})
}
setDraggedTask(null)
}
const getPriorityColor = (priority) => {
switch (priority) {
case 'high': return 'bg-red-100 text-red-800'
case 'medium': return 'bg-yellow-100 text-yellow-800'
case 'low': return 'bg-green-100 text-green-800'
default: return 'bg-gray-100 text-gray-800'
}
}
const TaskCard = ({ task }) => (
<Card
className="mb-3 cursor-move hover:shadow-md transition-shadow"
draggable
onDragStart={() => handleDragStart(task)}
>
<CardHeader className="pb-2">
<div className="flex justify-between items-start">
<h4 className="font-medium text-gray-900">{task.title}</h4>
<Badge className={getPriorityColor(task.priority)}>
{task.priority}
</Badge>
</div>
</CardHeader>
<CardContent>
{task.description && (
<p className="text-sm text-gray-600 mb-3">{task.description}</p>
)}
<div className="flex items-center gap-4 text-xs text-gray-500">
{task.dueDate && (
<div className="flex items-center gap-1">
<Calendar className="w-3 h-3" />
{new Date(task.dueDate).toLocaleDateString()}
</div>
)}
<div className="flex items-center gap-1">
<Clock className="w-3 h-3" />
{new Date(task.createdAt).toLocaleDateString()}
</div>
{task.category && (
<Badge variant="outline" className="text-xs">
{task.category}
</Badge>
)}
</div>
</CardContent>
</Card>
)
return (
<div className="grid grid-cols-3 gap-6">
{columns.map(column => (
<div key={column.id} className="flex flex-col">
<div className={`p-4 rounded-t-lg border-2 border-b-0 ${column.color}`}>
<h3 className="font-semibold text-gray-900">
{column.title}
<span className="ml-2 text-sm text-gray-600">
({getTasksByStatus(column.id).length})
</span>
</h3>
</div>
<div
className={`flex-1 p-4 rounded-b-lg border-2 border-t-0 min-h-[400px] ${column.color}`}
onDragOver={handleDragOver}
onDrop={(e) => handleDrop(e, column.id)}
>
{getTasksByStatus(column.id).map(task => (
<TaskCard key={task.id} task={task} />
))}
</div>
</div>
))}
</div>
)
}
export default TaskBoard
Project 2: Smart Content Generator
Let’s build a content generation tool where users can create blog posts, social media content, and marketing materials through AI collaboration.
Step 1: Define Content Generation Agent
Create src/agents/ContentAgent.js:
import { Agent } from '@microsoft/magentic-ui'
export const contentAgent = new Agent({
name: 'ContentGenerator',
description: 'AI-powered content creation for blogs, social media, and marketing',
capabilities: [
{
name: 'generateBlogPost',
description: 'Generate a complete blog post with outline and content',
parameters: {
topic: { type: 'string', required: true },
tone: { type: 'enum', options: ['professional', 'casual', 'friendly', 'formal'], default: 'professional' },
length: { type: 'enum', options: ['short', 'medium', 'long'], default: 'medium' },
keywords: { type: 'array', required: false },
targetAudience: { type: 'string', required: false }
}
},
{
name: 'generateSocialMedia',
description: 'Create social media posts for different platforms',
parameters: {
content: { type: 'string', required: true },
platforms: { type: 'array', options: ['twitter', 'linkedin', 'facebook', 'instagram'], required: true },
tone: { type: 'enum', options: ['professional', 'casual', 'engaging', 'humorous'], default: 'casual' },
includeHashtags: { type: 'boolean', default: true },
includeEmojis: { type: 'boolean', default: true }
}
},
{
name: 'generateEmailNewsletter',
description: 'Create an email newsletter campaign',
parameters: {
purpose: { type: 'string', required: true },
audience: { type: 'string', required: true },
keyPoints: { type: 'array', required: true },
callToAction: { type: 'string', required: false },
tone: { type: 'enum', options: ['professional', 'friendly', 'persuasive'], default: 'professional' }
}
},
{
name: 'optimizeSEO',
description: 'Optimize content for SEO with meta tags and keywords',
parameters: {
content: { type: 'string', required: true },
targetKeywords: { type: 'array', required: false }
}
},
{
name: 'generateOutline',
description: 'Create a structured outline for long-form content',
parameters: {
topic: { type: 'string', required: true },
type: { type: 'enum', options: ['blog', 'article', 'video', 'podcast'], default: 'blog' },
depth: { type: 'enum', options: ['basic', 'detailed', 'comprehensive'], default: 'detailed' }
}
}
],
// Templates and styles
templates: {
blogPost: {
structure: ['introduction', 'mainPoints', 'conclusion'],
minWords: 500,
maxWords: 3000
},
socialMedia: {
twitter: { maxLength: 280, includeImages: true },
linkedin: { maxLength: 3000, professionalTone: true },
facebook: { maxLength: 500, mediaRich: true },
instagram: { maxLength: 2200, visualFocus: true }
}
},
// UI preferences
uiPreferences: {
layout: 'split-view',
showPreview: true,
enableRealTimeGeneration: true,
showWordCount: true,
enableExport: ['pdf', 'docx', 'html', 'markdown']
}
})
Step 2: Create Content Generator Interface
Create src/components/ContentGenerator.js:
import React, { useState, useEffect } from 'react'
import { useMagenticUI } from '@microsoft/magentic-ui-react'
import { contentAgent } from '../agents/ContentAgent'
import ContentEditor from './ContentEditor'
import ContentPreview from './ContentPreview'
import TemplateGallery from './TemplateGallery'
import { FileText, Share2, Download, Settings, Sparkles } from 'lucide-react'
function ContentGenerator() {
const [activeTab, setActiveTab] = useState('generator')
const [generatedContent, setGeneratedContent] = useState(null)
const [isGenerating, setIsGenerating] = useState(false)
const [selectedTemplate, setSelectedTemplate] = useState(null)
const {
startConversation,
generateInterface,
executeCapability,
conversation
} = useMagenticUI()
const handleContentGeneration = async (contentType, params) => {
setIsGenerating(true)
try {
const result = await executeCapability(contentAgent, contentType, params)
setGeneratedContent(result)
// Start conversation to refine content
await startConversation(contentAgent, {
context: {
generatedContent: result,
contentType: contentType,
parameters: params
},
greeting: "I've generated your content! Would you like me to refine it or make any adjustments?",
suggestions: [
"Make it more engaging",
"Add more details",
"Change the tone",
"Optimize for SEO",
"Generate variations"
]
})
} catch (error) {
console.error('Content generation failed:', error)
} finally {
setIsGenerating(false)
}
}
const handleContentRefinement = async (refinement) => {
if (!generatedContent) return
setIsGenerating(true)
try {
const refinedContent = await executeCapability(contentAgent, 'refineContent', {
originalContent: generatedContent,
refinement: refinement
})
setGeneratedContent(refinedContent)
} catch (error) {
console.error('Content refinement failed:', error)
} finally {
setIsGenerating(false)
}
}
return (
<div className="flex h-screen bg-gray-50">
{/* Sidebar */}
<div className="w-80 bg-white border-r flex flex-col">
<div className="p-6 border-b">
<h2 className="text-xl font-bold text-gray-900 mb-2">
Content Generator
</h2>
<p className="text-sm text-gray-600">
AI-powered content creation for all your needs
</p>
</div>
{/* Navigation */}
<div className="flex-1">
<nav className="p-4 space-y-2">
{[
{ id: 'generator', label: 'Generate', icon: Sparkles },
{ id: 'templates', label: 'Templates', icon: FileText },
{ id: 'history', label: 'History', icon: Settings },
{ id: 'export', label: 'Export', icon: Download }
].map(tab => (
<button
key={tab.id}
onClick={() => setActiveTab(tab.id)}
className={`w-full flex items-center gap-3 px-4 py-3 rounded-lg text-left transition-colors ${
activeTab === tab.id
? 'bg-blue-600 text-white'
: 'hover:bg-gray-100 text-gray-700'
}`}
>
<tab.icon className="w-4 h-4" />
{tab.label}
</button>
))}
</nav>
</div>
</div>
{/* Main Content Area */}
<div className="flex-1 flex flex-col">
{activeTab === 'generator' && (
<div className="flex-1 flex">
{/* Generator Panel */}
<div className="w-96 p-6 border-r bg-white">
<h3 className="text-lg font-semibold mb-4">What would you like to create?</h3>
<div className="space-y-4">
{/* Blog Post Generator */}
<div className="border rounded-lg p-4 hover:border-blue-300 cursor-pointer transition-colors"
onClick={() => generateInterface('blogPost')}>
<h4 className="font-medium mb-2">📝 Blog Post</h4>
<p className="text-sm text-gray-600 mb-3">
Create engaging blog posts with AI assistance
</p>
<div className="text-xs text-gray-500">
Topics • Outlines • Full content • SEO optimization
</div>
</div>
{/* Social Media Generator */}
<div className="border rounded-lg p-4 hover:border-blue-300 cursor-pointer transition-colors"
onClick={() => generateInterface('socialMedia')}>
<h4 className="font-medium mb-2">📱 Social Media</h4>
<p className="text-sm text-gray-600 mb-3">
Generate posts for all social platforms
</p>
<div className="text-xs text-gray-500">
Twitter • LinkedIn • Facebook • Instagram
</div>
</div>
{/* Email Newsletter */}
<div className="border rounded-lg p-4 hover:border-blue-300 cursor-pointer transition-colors"
onClick={() => generateInterface('newsletter')}>
<h4 className="font-medium mb-2">📧 Newsletter</h4>
<p className="text-sm text-gray-600 mb-3">
Create compelling email newsletters
</p>
<div className="text-xs text-gray-500">
Campaigns • Templates • Personalization
</div>
</div>
{/* Content Ideas */}
<div className="border rounded-lg p-4 hover:border-blue-300 cursor-pointer transition-colors"
onClick={() => generateInterface('ideas')}>
<h4 className="font-medium mb-2">💡 Content Ideas</h4>
<p className="text-sm text-gray-600 mb-3">
Get AI-powered content suggestions
</p>
<div className="text-xs text-gray-500">
Trending topics • Keyword research • Content calendar
</div>
</div>
</div>
</div>
{/* Editor and Preview */}
<div className="flex-1 flex">
<ContentEditor
content={generatedContent}
onContentChange={setGeneratedContent}
isGenerating={isGenerating}
/>
{generatedContent && (
<ContentPreview content={generatedContent} />
)}
</div>
</div>
)}
{activeTab === 'templates' && (
<TemplateGallery
onSelectTemplate={setSelectedTemplate}
selectedTemplate={selectedTemplate}
/>
)}
{activeTab === 'history' && (
<div className="flex-1 p-6">
<h3 className="text-lg font-semibold mb-4">Generation History</h3>
{/* History component would go here */}
<p className="text-gray-600">Your previous content generations will appear here.</p>
</div>
)}
{activeTab === 'export' && generatedContent && (
<div className="flex-1 p-6">
<h3 className="text-lg font-semibold mb-4">Export Options</h3>
<div className="grid grid-cols-2 gap-4 max-w-2xl">
{['PDF', 'Word', 'HTML', 'Markdown'].map(format => (
<button
key={format}
className="p-4 border rounded-lg hover:border-blue-300 transition-colors"
onClick={() => handleExport(format.toLowerCase())}
>
<div className="text-lg font-medium mb-1">{format}</div>
<div className="text-sm text-gray-600">
Export as {format.toLowerCase()} file
</div>
</button>
))}
</div>
</div>
)}
</div>
{/* Conversation Interface */}
{conversation.isActive && (
<div className="w-96 border-l bg-white">
<ConversationInterface
agent={contentAgent}
onExecuteAction={handleContentRefinement}
content={generatedContent}
/>
</div>
)}
</div>
)
}
export default ContentGenerator
Project 3: Conversational Data Explorer
Let’s build a data exploration tool where users can query and visualize data through natural conversation.
Step 1: Define Data Explorer Agent
Create src/agents/DataAgent.js:
import { Agent } from '@microsoft/magentic-ui'
export const dataAgent = new Agent({
name: 'DataExplorer',
description: 'AI-powered data analysis and visualization assistant',
capabilities: [
{
name: 'queryData',
description: 'Query data using natural language',
parameters: {
query: { type: 'string', required: true },
dataSource: { type: 'string', required: false },
limit: { type: 'number', default: 100 }
}
},
{
name: 'generateChart',
description: 'Create data visualizations',
parameters: {
data: { type: 'array', required: true },
chartType: { type: 'enum', options: ['bar', 'line', 'pie', 'scatter', 'heatmap'], default: 'auto' },
title: { type: 'string', required: false },
groupBy: { type: 'string', required: false }
}
},
{
name: 'analyzeData',
description: 'Perform statistical analysis on data',
parameters: {
data: { type: 'array', required: true },
analysisType: { type: 'enum', options: ['summary', 'correlation', 'trends', 'outliers'], default: 'summary' },
columns: { type: 'array', required: false }
}
},
{
name: 'exportData',
description: 'Export data in various formats',
parameters: {
data: { type: 'array', required: true },
format: { type: 'enum', options: ['csv', 'json', 'excel', 'pdf'], default: 'csv' },
filename: { type: 'string', required: false }
}
}
],
// Data sources configuration
dataSources: {
sample: {
name: 'Sample Sales Data',
type: 'csv',
url: '/data/sales.csv',
columns: ['date', 'product', 'category', 'sales', 'region', 'salesperson']
},
users: {
name: 'User Analytics',
type: 'api',
url: '/api/users',
columns: ['id', 'name', 'email', 'signup_date', 'last_active', 'plan']
}
},
// Visualization preferences
visualizationPreferences: {
defaultChartType: 'auto',
colorScheme: 'modern',
interactiveCharts: true,
showDataLabels: true,
enableAnimations: true
}
})
Step 2: Create Data Explorer Interface
Create src/components/DataExplorer.js:
import React, { useState, useEffect } from 'react'
import { useMagenticUI } from '@microsoft/magentic-ui-react'
import { dataAgent } from '../agents/DataAgent'
import DataVisualization from './DataVisualization'
import DataTable from './DataTable'
import QueryBuilder from './QueryBuilder'
import { Database, BarChart3, TrendingUp, Download } from 'lucide-react'
function DataExplorer() {
const [data, setData] = useState([])
const [currentQuery, setCurrentQuery] = useState('')
const [visualizations, setVisualizations] = useState([])
const [selectedDataSource, setSelectedDataSource] = useState('sample')
const [analysisResults, setAnalysisResults] = useState(null)
const {
startConversation,
executeCapability,
conversation
} = useMagenticUI()
// Load initial data
useEffect(() => {
loadDataSource(selectedDataSource)
}, [selectedDataSource])
const loadDataSource = async (source) => {
try {
const result = await executeCapability(dataAgent, 'queryData', {
query: 'SELECT * FROM data LIMIT 1000',
dataSource: source
})
setData(result)
} catch (error) {
console.error('Failed to load data:', error)
}
}
const handleNaturalQuery = async (query) => {
setCurrentQuery(query)
try {
const result = await executeCapability(dataAgent, 'queryData', {
query,
dataSource: selectedDataSource
})
setData(result)
// Generate visualization suggestions
const chartSuggestions = await executeCapability(dataAgent, 'generateChart', {
data: result,
chartType: 'auto'
})
setVisualizations(chartSuggestions)
// Start conversation to discuss results
await startConversation(dataAgent, {
context: {
query,
resultCount: result.length,
visualizations: chartSuggestions
},
greeting: `I found ${result.length} results for your query. Here are some visualizations I created.`,
suggestions: [
"Show me more details",
"Create a different chart type",
"Analyze this data",
"Export the results"
]
})
} catch (error) {
console.error('Query failed:', error)
}
}
const handleAnalysis = async (analysisType) => {
if (data.length === 0) return
try {
const results = await executeCapability(dataAgent, 'analyzeData', {
data,
analysisType
})
setAnalysisResults(results)
} catch (error) {
console.error('Analysis failed:', error)
}
}
const handleExport = async (format) => {
if (data.length === 0) return
try {
await executeCapability(dataAgent, 'exportData', {
data,
format
})
} catch (error) {
console.error('Export failed:', error)
}
}
return (
<div className="flex h-screen bg-gray-50">
{/* Main Explorer Interface */}
<div className="flex-1 flex flex-col">
{/* Header */}
<div className="bg-white border-b p-4">
<div className="flex items-center justify-between">
<div>
<h2 className="text-2xl font-bold text-gray-900">Data Explorer</h2>
<p className="text-sm text-gray-600">
Query and visualize your data with AI assistance
</p>
</div>
<div className="flex items-center gap-4">
{/* Data Source Selector */}
<select
value={selectedDataSource}
onChange={(e) => setSelectedDataSource(e.target.value)}
className="px-3 py-2 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500"
>
<option value="sample">Sample Sales Data</option>
<option value="users">User Analytics</option>
<option value="custom">Custom Data Source</option>
</select>
{/* Export Button */}
<button
onClick={() => handleExport('csv')}
className="flex items-center gap-2 px-4 py-2 bg-green-600 text-white rounded-lg hover:bg-green-700"
>
<Download className="w-4 h-4" />
Export
</button>
</div>
</div>
</div>
{/* Natural Language Query */}
<div className="p-6 bg-white border-b">
<div className="max-w-4xl mx-auto">
<label className="block text-sm font-medium text-gray-700 mb-2">
Ask about your data in natural language:
</label>
<div className="flex gap-4">
<input
type="text"
value={currentQuery}
onChange={(e) => setCurrentQuery(e.target.value)}
placeholder="e.g., 'Show me sales by region for last quarter' or 'What are the top 10 products?'"
className="flex-1 px-4 py-3 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500"
onKeyPress={(e) => {
if (e.key === 'Enter') {
handleNaturalQuery(currentQuery)
}
}}
/>
<button
onClick={() => handleNaturalQuery(currentQuery)}
className="px-6 py-3 bg-blue-600 text-white rounded-lg hover:bg-blue-700 font-medium"
>
<Database className="w-4 h-4 inline mr-2" />
Query
</button>
</div>
{/* Query Suggestions */}
<div className="mt-4 flex flex-wrap gap-2">
{[
"Show sales trends over time",
"Top performing products",
"Regional performance comparison",
"Sales by category",
"Monthly growth analysis"
].map((suggestion, index) => (
<button
key={index}
onClick={() => setCurrentQuery(suggestion)}
className="px-3 py-1 text-sm bg-gray-100 text-gray-700 rounded-full hover:bg-gray-200"
>
{suggestion}
</button>
))}
</div>
</div>
</div>
{/* Results Area */}
<div className="flex-1 p-6">
{data.length > 0 && (
<div className="space-y-6">
{/* Summary Stats */}
<div className="grid grid-cols-4 gap-4">
<div className="bg-white p-4 rounded-lg border">
<div className="flex items-center gap-2">
<Database className="w-5 h-5 text-blue-600" />
<span className="text-sm text-gray-600">Total Records</span>
</div>
<div className="text-2xl font-bold text-gray-900 mt-1">
{data.length.toLocaleString()}
</div>
</div>
<div className="bg-white p-4 rounded-lg border">
<div className="flex items-center gap-2">
<TrendingUp className="w-5 h-5 text-green-600" />
<span className="text-sm text-gray-600">Columns</span>
</div>
<div className="text-2xl font-bold text-gray-900 mt-1">
{data[0] ? Object.keys(data[0]).length : 0}
</div>
</div>
{/* More stats cards */}
</div>
{/* Visualizations */}
{visualizations.length > 0 && (
<div>
<h3 className="text-lg font-semibold mb-4">AI-Generated Visualizations</h3>
<div className="grid grid-cols-2 gap-6">
{visualizations.map((viz, index) => (
<DataVisualization
key={index}
data={data}
config={viz}
/>
))}
</div>
</div>
)}
{/* Data Table */}
<div>
<h3 className="text-lg font-semibold mb-4">Data Results</h3>
<DataTable data={data} />
</div>
{/* Analysis Results */}
{analysisResults && (
<div>
<h3 className="text-lg font-semibold mb-4">Analysis Results</h3>
<div className="bg-white p-6 rounded-lg border">
<pre className="text-sm text-gray-700 whitespace-pre-wrap">
{JSON.stringify(analysisResults, null, 2)}
</pre>
</div>
</div>
)}
</div>
)}
{currentQuery && data.length === 0 && (
<div className="text-center py-12">
<Database className="w-12 h-12 text-gray-400 mx-auto mb-4" />
<h3 className="text-lg font-medium text-gray-900 mb-2">
No results found
</h3>
<p className="text-gray-600">
Try modifying your query or check the data source
</p>
</div>
)}
</div>
</div>
{/* Conversation Interface */}
{conversation.isActive && (
<div className="w-96 border-l bg-white">
<ConversationInterface
agent={dataAgent}
onExecuteAction={handleNaturalQuery}
data={data}
/>
</div>
)}
</div>
)
}
export default DataExplorer
Advanced Patterns and Best Practices
1. Multi-Agent Collaboration
import { AgentOrchestrator } from '@microsoft/magentic-ui'
// Create orchestrator for multiple agents
const orchestrator = new AgentOrchestrator({
agents: [taskAgent, contentAgent, dataAgent],
collaborationRules: {
// When task agent creates content, involve content agent
'task.create_content': ['contentAgent'],
// When content agent needs data, involve data agent
'content.needs_data': ['dataAgent'],
// Allow agents to share context
enableContextSharing: true
}
})
// Usage
const result = await orchestrator.executeWorkflow({
trigger: 'create_project_report',
context: {
project: 'Q4 Sales Analysis',
requirements: ['data_analysis', 'content_creation', 'task_assignment']
}
})
2. Adaptive UI Generation
// UI that adapts to user expertise level
const adaptiveUI = {
generateInterface: (userLevel, context) => {
const config = {
beginner: {
showGuides: true,
simplifyInterface: true,
provideExamples: true,
stepByStepMode: true
},
intermediate: {
showGuides: false,
simplifyInterface: false,
provideExamples: true,
stepByStepMode: false
},
expert: {
showGuides: false,
simplifyInterface: false,
provideExamples: false,
stepByStepMode: false,
showAdvancedOptions: true
}
}
return generateUIComponents({
...context,
...config[userLevel]
})
}
}
3. Context-Aware Suggestions
// Smart suggestions based on user behavior
class ContextEngine {
constructor() {
this.userContext = {
recentActions: [],
preferences: {},
timeOfDay: new Date().getHours(),
workPatterns: {}
}
}
updateContext(action, result) {
this.userContext.recentActions.push({
action,
result,
timestamp: new Date()
})
// Keep only last 50 actions
if (this.userContext.recentActions.length > 50) {
this.userContext.recentActions = this.userContext.recentActions.slice(-50)
}
this.updatePatterns()
}
getSuggestions() {
const suggestions = []
// Time-based suggestions
if (this.userContext.timeOfDay >= 9 && this.userContext.timeOfDay <= 17) {
suggestions.push("Start your daily planning")
}
// Pattern-based suggestions
if (this.detectRepetitiveTask()) {
suggestions.push("Automate this repetitive task")
}
// Context-based suggestions
const lastAction = this.userContext.recentActions.slice(-1)[0]
if (lastAction?.action === 'create_task') {
suggestions.push("Set up reminders for this task")
}
return suggestions
}
detectRepetitiveTask() {
// Analyze recent actions for patterns
const recentActions = this.userContext.recentActions.slice(-10)
const actionCounts = recentActions.reduce((acc, action) => {
acc[action.action] = (acc[action.action] || 0) + 1
return acc
}, {})
return Object.values(actionCounts).some(count => count >= 3)
}
}
4. Error Recovery and Fallbacks
// Robust error handling for AI interactions
class ResilientAgent {
constructor(agent) {
this.agent = agent
this.retryStrategies = [
'rephrase_query',
'simplify_request',
'provide_examples',
'fallback_to_manual'
]
}
async executeWithFallback(capability, params, maxRetries = 3) {
let lastError
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
const modifiedParams = this.applyRetryStrategy(attempt, params)
const result = await this.agent.execute(capability, modifiedParams)
return result
} catch (error) {
lastError = error
console.warn(`Attempt ${attempt + 1} failed:`, error)
if (attempt === maxRetries - 1) {
// Last attempt - provide manual fallback
return this.provideManualInterface(capability, params)
}
}
}
throw lastError
}
applyRetryStrategy(attempt, params) {
const strategies = this.retryStrategies
switch (strategies[attempt]) {
case 'rephrase_query':
return {
...params,
query: this.rephraseQuery(params.query)
}
case 'simplify_request':
return {
...params,
complexity: 'simple'
}
case 'provide_examples':
return {
...params,
examples: true
}
default:
return params
}
}
provideManualInterface(capability, params) {
// Generate traditional UI as fallback
return {
type: 'manual_fallback',
capability,
params,
ui: this.generateManualUI(capability, params)
}
}
}
Integration with AI Services
OpenAI Integration
// services/openai.js
import OpenAI from 'openai'
class OpenAIService {
constructor(config) {
this.client = new OpenAI({
apiKey: config.apiKey,
organization: config.organization
})
this.model = config.model || 'gpt-4-turbo-preview'
}
async generateResponse(prompt, context = {}) {
try {
const response = await this.client.chat.completions.create({
model: this.model,
messages: [
{
role: 'system',
content: this.buildSystemPrompt(context)
},
{
role: 'user',
content: prompt
}
],
temperature: 0.7,
max_tokens: 2000,
functions: context.availableFunctions,
function_call: 'auto'
})
return this.parseResponse(response)
} catch (error) {
console.error('OpenAI API error:', error)
throw error
}
}
buildSystemPrompt(context) {
return `You are a helpful AI assistant integrated with Magentic UI.
Current context: ${JSON.stringify(context)}
Guidelines:
1. Always consider user's current context and history
2. Generate appropriate UI components when needed
3. Be proactive in suggesting next actions
4. Ask clarifying questions when intent is unclear
5. Provide structured responses that can be parsed`
}
parseResponse(response) {
const choice = response.choices[0]
if (choice.message.function_call) {
return {
type: 'function_call',
function: choice.message.function_call.name,
parameters: JSON.parse(choice.message.function_call.arguments)
}
}
return {
type: 'text',
content: choice.message.content,
finishReason: choice.finish_reason
}
}
}
export default OpenAIService
Multi-Model Support
// services/modelRouter.js
class ModelRouter {
constructor() {
this.models = {
openai: new OpenAIService(openaiConfig),
claude: new ClaudeService(claudeConfig),
local: new LocalModelService(localConfig)
}
this.routingRules = {
'text_generation': 'openai',
'code_generation': 'claude',
'data_analysis': 'openai',
'image_generation': 'local',
'fast_response': 'local'
}
}
async route(task, params) {
const modelType = this.selectModel(task, params)
const model = this.models[modelType]
try {
const result = await model.execute(task, params)
return { result, modelUsed: modelType }
} catch (error) {
// Fallback to next best model
const fallbackModel = this.getFallbackModel(modelType)
return await this.models[fallbackModel].execute(task, params)
}
}
selectModel(task, params) {
// Business logic for model selection
if (params.priority === 'speed') {
return 'local'
}
if (params.priority === 'quality') {
return 'openai'
}
if (task.includes('code')) {
return 'claude'
}
return this.routingRules[task] || 'openai'
}
getFallbackModel(primaryModel) {
const fallbackOrder = ['openai', 'claude', 'local']
const currentIndex = fallbackOrder.indexOf(primaryModel)
return fallbackOrder[currentIndex + 1] || fallbackOrder[0]
}
}
Production Deployment
Docker Configuration
# Dockerfile
FROM node:18-alpine
WORKDIR /app
# Copy package files
COPY package*.json ./
RUN npm ci --only=production
# Copy source code
COPY . .
# Build the application
RUN npm run build
# Install serve for production
RUN npm install -g serve
# Expose port
EXPOSE 3000
# Health check
HEALTHCHECK --interval=30s --timeout=3s --start-period=5s --retries=3 \
CMD curl -f http://localhost:3000/health || exit 1
# Start the application
CMD ["serve", "-s", "build", "-l", "3000"]
# docker-compose.prod.yml
version: '3.8'
services:
magentic-ui:
build: .
ports:
- "3000:3000"
environment:
- NODE_ENV=production
- REACT_APP_OPENAI_API_KEY=${OPENAI_API_KEY}
- REACT_APP_MAGENTIC_BACKEND_URL=${MAGENTIC_BACKEND_URL}
restart: unless-stopped
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s
nginx:
image: nginx:alpine
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/nginx/ssl
depends_on:
- magentic-ui
restart: unless-stopped
Performance Optimization
// performance/optimization.js
class PerformanceOptimizer {
constructor() {
this.metrics = {
responseTime: [],
memoryUsage: [],
errorRate: 0
}
this.optimizationStrategies = {
caching: new ResponseCache(),
batching: new RequestBatcher(),
compression: new ResponseCompressor()
}
}
async optimizeRequest(request) {
const startTime = Date.now()
try {
// Check cache first
const cachedResponse = await this.optimizationStrategies.caching.get(request)
if (cachedResponse) {
return cachedResponse
}
// Batch similar requests
const batchedResponse = await this.optimizationStrategies.batching.process(request)
if (batchedResponse) {
return batchedResponse
}
// Process request
const response = await this.processRequest(request)
// Compress response if needed
const compressedResponse = await this.optimizationStrategies.compression.compress(response)
// Cache the response
await this.optimizationStrategies.caching.set(request, compressedResponse)
// Record metrics
this.recordMetrics(startTime, null)
return compressedResponse
} catch (error) {
this.recordMetrics(startTime, error)
throw error
}
}
recordMetrics(startTime, error) {
const responseTime = Date.now() - startTime
this.metrics.responseTime.push(responseTime)
if (this.metrics.responseTime.length > 1000) {
this.metrics.responseTime = this.metrics.responseTime.slice(-1000)
}
if (error) {
this.metrics.errorRate++
}
// Trigger optimizations if needed
this.checkAndApplyOptimizations()
}
checkAndApplyOptimizations() {
const avgResponseTime = this.metrics.responseTime.reduce((a, b) => a + b, 0) / this.metrics.responseTime.length
if (avgResponseTime > 2000) {
// Enable more aggressive caching
this.optimizationStrategies.caching.increaseTTL()
}
if (this.metrics.errorRate > 0.05) {
// Enable circuit breaker
this.optimizationStrategies.circuitBreaker.enable()
}
}
}
Monitoring and Analytics
// monitoring/analytics.js
class MagenticUIMonitor {
constructor() {
this.events = []
this.userSessions = new Map()
this.performanceMetrics = new Map()
}
trackUserInteraction(event, context) {
const interaction = {
timestamp: new Date(),
type: event.type,
element: event.element,
value: event.value,
sessionId: this.getSessionId(),
context: {
userAgent: navigator.userAgent,
screenResolution: `${screen.width}x${screen.height}`,
...context
}
}
this.events.push(interaction)
this.sendToAnalytics(interaction)
}
trackAIGeneration(request, response, duration) {
const aiEvent = {
type: 'ai_generation',
timestamp: new Date(),
request: {
capability: request.capability,
parameters: request.parameters,
model: request.model
},
response: {
success: response.success,
responseTime: duration,
tokensUsed: response.tokensUsed
}
}
this.events.push(aiEvent)
this.updatePerformanceMetrics(request.capability, duration, response.success)
}
updatePerformanceMetrics(capability, duration, success) {
if (!this.performanceMetrics.has(capability)) {
this.performanceMetrics.set(capability, {
totalRequests: 0,
totalDuration: 0,
successCount: 0,
errorCount: 0
})
}
const metrics = this.performanceMetrics.get(capability)
metrics.totalRequests++
metrics.totalDuration += duration
if (success) {
metrics.successCount++
} else {
metrics.errorCount++
}
}
generateReport() {
return {
totalInteractions: this.events.length,
uniqueSessions: this.userSessions.size,
performanceByCapability: Object.fromEntries(this.performanceMetrics),
topCapabilities: this.getTopCapabilities(),
errorRate: this.calculateErrorRate(),
averageResponseTime: this.calculateAverageResponseTime()
}
}
}
Resources and Further Learning
Official Documentation
- Magentic UI GitHub: github.com/microsoft/magentic-ui - Source code and examples
- Microsoft Research Blog: microsoft.com/en-us/research/blog/magentic-ui - Research paper and concepts
- API Documentation: magentic-ui.docs - Complete API reference
- Examples Repository: github.com/microsoft/magentic-ui-examples - Sample implementations
Learning Resources
- Human-AI Interaction Design: interaction-design.org - Principles of human-AI collaboration
- Conversational UI Patterns: conversation-design.com - Best practices for conversational interfaces
- Adaptive Interfaces: adaptive-ui.org - Dynamic UI generation techniques
- Agent-Based Architecture: agent-patterns.org - Multi-agent system design
Tools and Libraries
- React Integration: @microsoft/magentic-ui-react
- Vue Integration: @microsoft/magentic-ui-vue
- Angular Integration: @microsoft/magentic-ui-angular
- Styling Frameworks: Tailwind CSS, Styled Components, Emotion
AI Service Integrations
- OpenAI: platform.openai.com - GPT models and APIs
- Anthropic Claude: anthropic.com - Claude AI models
- Google AI: ai.google.dev - Gemini models and tools
- Local Models: ollama.ai - Run models locally
Community and Support
- Discord Community: discord.gg/magentic-ui
- GitHub Discussions: github.com/microsoft/magentic-ui/discussions
- Stack Overflow: Tag
magentic-ui - Reddit: r/magenticui
Advanced Topics
- Multi-Modal Interfaces: Combining text, voice, and visual interactions
- Context-Aware Computing: Adapting to user environment and preferences
- Federated Learning: Privacy-preserving AI interactions
- Edge AI: Running AI models locally for better performance
Example Projects
- Task Management: github.com/magentic-ui/task-manager
- Content Generator: github.com/magentic-ui/content-generator
- Data Explorer: github.com/magentic-ui/data-explorer
- Customer Support: github.com/magentic-ui/support-agent
Quick Reference Cheat Sheet
Agent Definition
const agent = new Agent({
name: 'AgentName',
capabilities: [
{
name: 'capabilityName',
description: 'What it does',
parameters: {
param1: { type: 'string', required: true }
}
}
]
})
UI Generation
const ui = await generateInterface({
agent: myAgent,
context: userContext,
intent: 'user_intent'
})
Conversation Flow
await startConversation(agent, {
context: {},
greeting: 'Hello! How can I help?',
suggestions: ['Option 1', 'Option 2']
})
Conclusion
Magentic UI represents a fundamental shift in how we think about user interfaces. Instead of static, predefined interactions, we’re moving toward dynamic, conversational, and adaptive experiences that truly put humans at the center.
Key Takeaways:
- Human-AI Partnership: Focus on collaboration, not replacement
- Context Awareness: Adapt to user needs and environment
- Dynamic Interfaces: Generate UI components on-demand
- Natural Interaction: Use conversation as the primary interaction model
- Continuous Learning: Improve from user interactions and feedback
Your Next Steps:
- Start with simple agent definitions and capabilities
- Build conversational interfaces that feel natural
- Implement context-aware UI generation
- Add multi-agent collaboration for complex workflows
- Focus on accessibility and inclusive design
The future of UI is conversational, adaptive, and intelligent. With Magentic UI, you’re at the forefront of this revolution. Now go build interfaces that truly understand and collaborate with humans! 🚀
Last Updated: December 3, 2025 Magentic UI Version: 0.3.0 This tutorial covers experimental features and may change as the framework evolves