The Power of the React Loop: Zero-to-Production Guide

Introduction Most LLM systems are fundamentally reactive: you ask a question, they generate an answer, and that’s it. If the first answer is wrong, there’s no self-correction. If the task requires multiple steps, there’s no iteration. If results don’t meet expectations, there’s no refinement. The React Loop changes this paradigm entirely. It transforms a static, one-shot LLM system into a dynamic, iterative agent that can: Sense its environment and gather context Reason about what actions to take Act by executing tools and generating responses Observe the results of its actions Evaluate whether it succeeded or needs to try again Learn from outcomes to improve future iterations The core insight: ...

December 28, 2025 · 32 min · 6782 words · martinuke0

Agent Memory: Zero-to-Production Guide

Introduction The difference between a chatbot and an agent isn’t just autonomy—it’s memory. A chatbot responds to each message in isolation. An agent remembers context, learns from outcomes, and evolves behavior over time. Agent memory is the system that enables this persistence: storing relevant information, retrieving it when needed, updating beliefs as reality changes, and forgetting what’s no longer relevant. Without memory, agents can’t maintain long-term goals, learn from mistakes, or provide consistent experiences. ...

December 28, 2025 · 41 min · 8544 words · martinuke0

Graph RAG: Zero-to-Production Guide

Introduction Traditional RAG systems treat knowledge as a collection of text chunks—embedded, indexed, and retrieved based on semantic similarity. This works well for simple factual lookup, but fails when questions require understanding relationships, dependencies, or multi-hop reasoning. Graph RAG fundamentally reimagines how knowledge is represented: instead of flat documents, information is structured as a graph of entities and relationships. This enables LLMs to traverse connections, follow dependencies, and reason about how concepts relate to each other. ...

December 28, 2025 · 21 min · 4330 words · martinuke0

Agentic RAG: Zero-to-Production Guide

Introduction Retrieval-Augmented Generation (RAG) transformed how LLMs access external knowledge. But traditional RAG has a fundamental limitation: it’s passive. You retrieve once, hope it’s relevant, and generate an answer. If the retrieval fails, the entire system fails. Agentic RAG changes this paradigm. Instead of a single retrieve-then-generate pass, an AI agent actively plans retrieval strategies, evaluates results, reformulates queries, and iterates until it finds sufficient information—or determines that it cannot. ...

December 28, 2025 · 10 min · 1923 words · martinuke0

Claude Agent Skills: Zero-to-Production Guide

Introduction Claude Code introduces a powerful feature called Skills—a way to teach Claude repeatable, specialized capabilities that persist across sessions. Think of Skills as plugins for behavior: structured instruction sets that define exactly what Claude should do, when to do it, and which tools it can use. Unlike one-off prompts that you type into chat, Skills are persistent, discoverable, and automatically selected by Claude based on context. They transform Claude from a general-purpose assistant into a specialized agent that can reliably perform complex, domain-specific tasks. ...

December 28, 2025 · 18 min · 3782 words · martinuke0
Feedback