Mastering RAG Pipelines: A Comprehensive Guide to Retrieval-Augmented Generation
Introduction Retrieval-Augmented Generation (RAG) has revolutionized how large language models (LLMs) handle knowledge-intensive tasks by combining retrieval from external data sources with generative capabilities. Unlike traditional LLMs limited to their training data, RAG pipelines enable models to access up-to-date, domain-specific information, reducing hallucinations and improving accuracy.[1][3][7] This blog post dives deep into RAG pipelines, exploring their architecture, components, implementation steps, best practices, and production challenges, complete with code examples and curated resource links. ...