Attention Is All You Need: Zero-to-Hero
In 2017, a team at Google published a paper that would fundamentally reshape the landscape of machine learning. “Attention Is All You Need” by Vaswani et al. introduced the Transformer architecture—a bold departure from the recurrent and convolutional approaches that had dominated sequence modeling for years. The paper’s central thesis was radical: you don’t need recurrence or convolution at all. Just attention mechanisms and feed-forward networks are sufficient to achieve state-of-the-art results in sequence-to-sequence tasks. ...