Mastering Structured Outputs with OpenAI

Introduction OpenAI’s Structured Outputs fundamentally change how developers build reliable applications on top of large language models. Instead of coaxing models with elaborate prompts to “return valid JSON,” you can now guarantee that responses conform to a precise JSON Schema or typed model, drastically reducing parsing errors, retries, and brittle post-processing.[1][2][7] This article explains very detailed structured outputs with OpenAI: what they are, how they differ from older patterns (like plain JSON mode), how to design robust schemas, integration patterns (Node, Python, Azure OpenAI, LangChain, third‑party helpers), and where to find the most useful documentation and learning resources. ...

January 11, 2026 · 12 min · 2438 words · martinuke0

Zero-to-Hero Gemini Cookbook Tutorial: Build Real Apps with Google's Gemini API

Google’s Gemini Cookbook is your ultimate hands-on guide to mastering the Gemini API. This official collection of Jupyter notebooks and quickstarts transforms beginners into production-ready developers by providing structured, copy-paste-ready examples for text generation, embeddings, function calling, streaming, multimodal inputs, and structured outputs. Whether you’re building chatbots, RAG systems, or multimodal apps, the Cookbook equips you with battle-tested patterns used by Google’s AI engineers. What is the Gemini Cookbook? The Gemini Cookbook is an official GitHub repository (google-gemini/cookbook) maintained by Google, featuring 50+ Jupyter notebooks organized into quickstarts and examples. It covers every major Gemini API capability with complete, runnable code. ...

January 4, 2026 · 5 min · 958 words · martinuke0
Feedback