Mastering llama.cpp: A Comprehensive Guide to Local LLM Inference

llama.cpp is a lightweight, high-performance C/C++ library for running large language models (LLMs) locally on diverse hardware, from CPUs to GPUs, enabling efficient inference without heavy dependencies.[7] This detailed guide covers everything from setup and building to advanced usage, Python integration, and optimization techniques, drawing from official documentation and community tutorials. Whether you’re a developer deploying models on edge devices or an enthusiast running LLMs on a laptop, llama.cpp democratizes AI by prioritizing minimal setup and state-of-the-art performance.[7] ...

January 7, 2026 · 4 min · 809 words · martinuke0

The Anatomy of Tool Calling in LLMs: A Deep Dive

Introduction Tool calling (also called function calling or plugins) is the capability that turns large language models from text predictors into general-purpose controllers for software. Instead of only generating natural language, an LLM can: Decide when to call a tool (e.g., “get_weather”, “run_sql_query”) Decide which tool to call Construct arguments for that tool Use the result of the tool to continue its reasoning or response This post is a deep dive into the anatomy of tool calling: the moving parts, how they interact, what can go wrong, and how to design reliable systems on top of them. ...

January 7, 2026 · 14 min · 2879 words · martinuke0

FastAPI Production-Ready Best Practices for LLM Applications: A Comprehensive Guide

FastAPI’s speed, async capabilities, and automatic API documentation make it ideal for building production-grade APIs serving Large Language Models (LLMs). This guide details best practices for deploying scalable, secure FastAPI applications handling LLM inference, streaming responses, and high-throughput requests.[1][3][5] LLM APIs often face unique challenges: high memory usage, long inference times, streaming outputs, and massive payloads. We’ll cover project structure, async optimization, security, deployment, and LLM-specific patterns like token streaming and caching. ...

January 6, 2026 · 7 min · 1337 words · martinuke0

How Ollama Works Internally: A Deep Technical Dive

Ollama is an open-source framework that enables running large language models (LLMs) locally on personal hardware, prioritizing privacy, low latency, and ease of use.[1][2] At its core, Ollama leverages llama.cpp as its inference engine within a client-server architecture, packaging models like Llama for seamless local execution without cloud dependencies.[2][3] This comprehensive guide dissects Ollama’s internal mechanics, from model management to inference pipelines, quantization techniques, and hardware optimization. Whether you’re a developer integrating Ollama into apps or a curious engineer, you’ll gain actionable insights into its layered design. ...

January 6, 2026 · 4 min · 739 words · martinuke0

A Deep Dive into Semantic Routers for LLM Applications (With Resources)

Introduction As language models are woven into more complex systems—multi-tool agents, retrieval-augmented generation, multi-model stacks—“what should handle this request?” becomes a first-class problem. That’s what a semantic router solves. Instead of routing based on keywords or simple rules, a semantic router uses meaning (embeddings, similarity, sometimes LLMs themselves) to decide: Which tool, model, or chain to call Which knowledge base to query Which specialized agent or microservice should own the request This post is a detailed, practical guide to semantic routers: ...

January 6, 2026 · 17 min · 3454 words · martinuke0
Feedback