Zero-to-Hero HyDE Tutorial: Master Hypothetical Document Embeddings for Superior RAG

HyDE (Hypothetical Document Embeddings) transforms retrieval-augmented generation (RAG) by generating fake, relevance-capturing documents from user queries, enabling zero-shot retrieval that outperforms traditional methods.[1][2] This concise tutorial takes developers from basics to production-ready implementation, with Python code, pitfalls, and scaling tips. What is HyDE and Why Does It Matter? Traditional RAG embeds user queries directly and matches them against document embeddings in a vector store, but this fails when queries are short, vague, or mismatch document styles—like informal questions versus formal passages.[4][5] HyDE solves this by using a language model (LLM) to hallucinate a hypothetical document that mimics the target corpus, then embeds that for retrieval.[1][2] ...

January 4, 2026 · 5 min · 981 words · martinuke0

Cache-Augmented Generation (CAG) for Developers: A Zero-to-Hero Tutorial

Table of Contents Introduction What is Cache-Augmented Generation? Why CAG Matters CAG vs RAG: A Detailed Comparison How Caching Works in LLMs Conceptual Implementation Practical Implementation Example Common Pitfalls and Solutions Cache Invalidation Strategies Production Best Practices Top 10 Learning Resources Introduction Large Language Models (LLMs) have revolutionized how we build intelligent applications, but they come with a critical challenge: latency and cost. Every query requires processing tokens, which translates to computational overhead and API expenses. Cache-Augmented Generation (CAG) represents a paradigm shift in how we augment LLMs with knowledge, offering a faster, more efficient alternative to traditional retrieval-based approaches. ...

January 4, 2026 · 14 min · 2839 words · martinuke0

Haystack Zero to Hero: Building Production-Ready RAG & Search Systems in Python

Introduction Retrieval-augmented generation (RAG), semantic search, and intelligent question-answering are now core building blocks of modern AI applications. But wiring together vector databases, file converters, retrievers, LLMs, and evaluation in a robust way is non‑trivial. Haystack, an open‑source Python framework by deepset, is designed to make this tractable: it gives you a full toolkit to ingest data, search it efficiently, query it with LLMs, run evaluation, and deploy to production. ...

January 4, 2026 · 16 min · 3281 words · martinuke0

Designing a Robust Generative AI Project Structure for LLM & RAG Applications

Modern generative AI applications—especially those built on large language models (LLMs) and Retrieval-Augmented Generation (RAG)—can become chaotic very quickly if they’re not organized well. Multiple model providers, complex prompt flows, vector databases, embeddings, caching, inference orchestration, and deployment considerations all compete for space in your codebase. Without a clear structure, your project becomes difficult to extend, debug, or hand off to other engineers. This article walks through a practical and scalable project structure for a generative AI application: ...

January 4, 2026 · 16 min · 3202 words · martinuke0

A Deep-Dive Tutorial on Small Language Models (sLLMs): From Theory to Deployment

Introduction Small Language Models (sLLMs) are quickly becoming the workhorses of practical AI applications. While frontier models (with hundreds of billions of parameters) grab headlines, small models in the 1B–15B parameter range often deliver better latency, lower cost, easier deployment, and stronger privacy—especially when fine‑tuned for a specific use case. This tutorial is a step‑by‑step, implementation‑oriented guide to working with sLLMs: What sLLMs are and why they matter How to choose the right model for your use case Setting up your environment and hardware Running inference with a small LLM Prompting and system design specific to sLLMs Fine‑tuning a small LLM with Low‑Rank Adaptation (LoRA) Quantization and optimization for constrained hardware Evaluation strategies and monitoring Deployment patterns (local, cloud, on‑device) Safety, governance, and risk considerations Curated learning resources and model hubs at the end All code examples use Python and popular open‑source tools like Hugging Face Transformers and PEFT. ...

January 4, 2026 · 15 min · 3177 words · martinuke0
Feedback