Mastering llama.cpp: A Comprehensive Guide to Local LLM Inference

llama.cpp is a lightweight, high-performance C/C++ library for running large language models (LLMs) locally on diverse hardware, from CPUs to GPUs, enabling efficient inference without heavy dependencies.[7] This detailed guide covers everything from setup and building to advanced usage, Python integration, and optimization techniques, drawing from official documentation and community tutorials. Whether you’re a developer deploying models on edge devices or an enthusiast running LLMs on a laptop, llama.cpp democratizes AI by prioritizing minimal setup and state-of-the-art performance.[7] ...

January 7, 2026 · 4 min · 809 words · martinuke0

RAM vs VRAM: A Deep Dive for Large Language Model Training and Inference

Introduction In the world of large language models (LLMs), memory is a critical bottleneck. RAM (system memory) and VRAM (video RAM on GPUs) serve distinct yet interconnected roles in training and running models like GPT or Llama. While RAM handles general computing tasks, VRAM is optimized for the massive parallel computations required by LLMs.[1][3][4] This detailed guide breaks down their differences, impacts on LLM workflows, and optimization strategies, drawing from hardware fundamentals and real-world AI applications. ...

January 6, 2026 · 5 min · 853 words · martinuke0

CPU vs GPU vs TPU: A Comprehensive Comparison for AI, Machine Learning, and Beyond

In the world of computing, CPUs, GPUs, and TPUs represent distinct architectures tailored to different workloads, with CPUs excelling in general-purpose tasks, GPUs dominating parallel processing like graphics and deep learning, and TPUs optimizing tensor operations for machine learning efficiency.[1][3][6] This detailed guide breaks down their architecture, performance, use cases, and trade-offs to help you choose the right hardware for your needs. What is a CPU? (Central Processing Unit) The CPU serves as the “brain” of any computer system, handling sequential tasks, orchestration, and general-purpose computing.[3][4][5] Designed for versatility, CPUs feature a few powerful cores optimized for low-latency serial processing, making them ideal for logic-heavy operations, data preprocessing, and multitasking like web browsing or office applications.[1][2] ...

January 6, 2026 · 5 min · 887 words · martinuke0

Mastering RAG Pipelines: A Comprehensive Guide to Retrieval-Augmented Generation

Introduction Retrieval-Augmented Generation (RAG) has revolutionized how large language models (LLMs) handle knowledge-intensive tasks by combining retrieval from external data sources with generative capabilities. Unlike traditional LLMs limited to their training data, RAG pipelines enable models to access up-to-date, domain-specific information, reducing hallucinations and improving accuracy.[1][3][7] This blog post dives deep into RAG pipelines, exploring their architecture, components, implementation steps, best practices, and production challenges, complete with code examples and curated resource links. ...

January 6, 2026 · 4 min · 826 words · martinuke0

Mastering FAISS: The Ultimate Guide to Efficient Similarity Search and Clustering

FAISS (Facebook AI Similarity Search) is an open-source library developed by Meta’s AI Research team for efficient similarity search and clustering of dense vectors, supporting datasets from small sets to billions of vectors that may not fit in RAM.[1][4][5] This comprehensive guide dives deep into FAISS’s architecture, indexing methods, practical implementations, optimizations, and real-world applications, equipping you with everything needed to leverage it in your projects. What is FAISS? FAISS stands for Facebook AI Similarity Search, a powerful C++ library with Python wrappers designed for high-performance similarity search in high-dimensional vector spaces.[4] It excels at tasks like finding nearest neighbors, clustering, and quantization, making it ideal for recommendation systems, image retrieval, natural language processing, and more.[5][8] ...

January 6, 2026 · 5 min · 1031 words · martinuke0
Feedback