System Design for LLMs: A Zero-to-Hero Guide

Introduction Designing systems around large language models (LLMs) is not just about calling an API. Once you go beyond toy demos, you face questions like: How do I keep latency under control as usage grows? How do I manage costs when token usage explodes? How do I make results reliable and safe enough for production? How do I deal with context limits, memory, and personalization? How do I choose between hosted APIs and self-hosting? This post is a zero-to-hero guide to system design for LLM-powered applications. It assumes you’re comfortable with web backends / APIs, but not necessarily a deep learning expert. ...

January 6, 2026 · 16 min · 3220 words · martinuke0

Mastering RAG Pipelines: A Comprehensive Guide to Retrieval-Augmented Generation

Introduction Retrieval-Augmented Generation (RAG) has revolutionized how large language models (LLMs) handle knowledge-intensive tasks by combining retrieval from external data sources with generative capabilities. Unlike traditional LLMs limited to their training data, RAG pipelines enable models to access up-to-date, domain-specific information, reducing hallucinations and improving accuracy.[1][3][7] This blog post dives deep into RAG pipelines, exploring their architecture, components, implementation steps, best practices, and production challenges, complete with code examples and curated resource links. ...

January 6, 2026 · 4 min · 826 words · martinuke0

The Best RAG Frameworks in 2026: A Comprehensive Guide to Building Superior Retrieval-Augmented Generation Systems

Retrieval-Augmented Generation (RAG) has revolutionized how large language models (LLMs) access external knowledge, reducing hallucinations and boosting accuracy in applications like chatbots, search engines, and enterprise AI.[1][2] In 2026, the ecosystem boasts mature open-source frameworks that streamline data ingestion, indexing, retrieval, and generation. This detailed guide ranks and compares the top RAG frameworks—LangChain, LlamaIndex, Haystack, RAGFlow, and emerging contenders—based on features, performance, scalability, and real-world use cases.[2][3][4] We’ll dive into key features, pros/cons, code examples, and deployment tips, helping developers choose the right tool for production-grade RAG pipelines. ...

January 6, 2026 · 5 min · 944 words · martinuke0

Vector Databases: The Zero-to-Hero Guide for Developers

Table of Contents Introduction What Are Vector Databases? Why Vector Databases Matter for LLMs Core Concepts: Embeddings, Similarity Search, and RAG Top Vector Databases Compared Getting Started: Installation and Setup Practical Python Examples Indexing Strategies Querying and Retrieval Performance and Scaling Considerations Best Practices for LLM Integration Conclusion Top 10 Learning Resources Introduction The explosion of large language models (LLMs) has fundamentally changed how we build intelligent applications. However, LLMs have a critical limitation: they operate on fixed training data and lack real-time access to external information. This is where vector databases enter the picture. ...

January 4, 2026 · 15 min · 3142 words · martinuke0

Context Engineering: Zero-to-Hero Tutorial for Developers Mastering LLM Performance

Context engineering is the systematic discipline of selecting, structuring, and delivering optimal context to large language models (LLMs) to maximize reliability, accuracy, and performance—far beyond basic prompt engineering.[1][2] This zero-to-hero tutorial equips developers with foundational concepts, advanced strategies, practical Python implementations using Hugging Face Transformers and LangChain, best practices, pitfalls, and curated resources to build production-ready LLM systems.[1][7] What is Context Engineering? Context engineering treats the LLM’s context window—its limited “working memory” (typically 4K–128K+ tokens)—as a critical resource to be architected like a database or API pipeline.[2][5] It involves curating prompts, retrievals, memory, tools, and history to ensure the model receives the right information at the right time, enabling plausible task completion without hallucinations or drift.[1][4][6] ...

January 4, 2026 · 5 min · 977 words · martinuke0
Feedback