A Deep-Dive Tutorial on Small Language Models (sLLMs): From Theory to Deployment
Introduction Small Language Models (sLLMs) are quickly becoming the workhorses of practical AI applications. While frontier models (with hundreds of billions of parameters) grab headlines, small models in the 1B–15B parameter range often deliver better latency, lower cost, easier deployment, and stronger privacy—especially when fine‑tuned for a specific use case. This tutorial is a step‑by‑step, implementation‑oriented guide to working with sLLMs: What sLLMs are and why they matter How to choose the right model for your use case Setting up your environment and hardware Running inference with a small LLM Prompting and system design specific to sLLMs Fine‑tuning a small LLM with Low‑Rank Adaptation (LoRA) Quantization and optimization for constrained hardware Evaluation strategies and monitoring Deployment patterns (local, cloud, on‑device) Safety, governance, and risk considerations Curated learning resources and model hubs at the end All code examples use Python and popular open‑source tools like Hugging Face Transformers and PEFT. ...