LMCache Zero-to-Hero: Accelerate LLM Inference with High-Performance KV Caching

As an expert LLM infrastructure engineer, I’ve deployed countless inference systems where time-to-first-token (TTFT) and GPU efficiency make or break production performance. Enter LMCache—a game-changing KV cache layer that delivers 3-10x delay reductions by enabling “prefill-once, reuse-everywhere” semantics across serving engines like vLLM.[1][2] This zero-to-hero tutorial takes you from conceptual understanding to production deployment, covering architecture, integration, pitfalls, and real-world wins. Whether you’re building multi-turn chatbots or RAG pipelines, LMCache will transform your LLM serving stack. ...

January 4, 2026 · 5 min · 885 words · martinuke0

Zero-to-Hero with the vLLM Router: Load Balancing and Scaling vLLM Model Servers

Introduction vLLM has quickly become one of the most popular inference engines for serving large language models efficiently, thanks to its paged attention and strong OpenAI-compatible API. But as soon as you move beyond a single GPU or a single model server, you run into familiar infrastructure questions: How do I distribute traffic across multiple vLLM servers? How do I handle failures and keep latency predictable? How do I roll out new model versions without breaking clients? This is where the vLLM Router comes in. ...

January 4, 2026 · 15 min · 3023 words · martinuke0

Zero to Hero with vLLM: A Practical Guide for High‑Throughput LLM Inference

Introduction If you’re trying to serve large language models (LLMs) efficiently on GPUs, you quickly run into a wall: GPU memory gets eaten by KV cache Throughput collapses as concurrent users increase You spend more on hardware than on your actual application vLLM is an open-source inference engine designed to fix this. It combines: A highly optimized attention implementation (PagedAttention) Continuous batching and scheduling A production-ready API server (OpenAI-compatible) Tight GPU memory management This tutorial is a concise zero-to-hero guide for developers who want to: ...

January 4, 2026 · 13 min · 2605 words · martinuke0

vLLM Deep Dive — Architecture, Features, and Production Best Practices

Introduction vLLM is an open-source, production-focused inference engine for large language models (LLMs) that prioritizes high throughput, low latency, and efficient GPU memory usage. This post provides a deep technical dive into vLLM’s architecture, core innovations (especially PagedAttention), quantization and model support, scheduling and batching strategies, distributed and multi-GPU operation, practical deployment patterns, benchmarks and trade-offs, and troubleshooting tips for production systems. Table of contents Introduction What is vLLM and when to use it Core innovations PagedAttention and KV memory management Micro-batching and continuous batching Kernel and CUDA optimizations Model support and quantization Supported model families and formats Quantization: GPTQ, AWQ, INT4/INT8/FP8 Scheduling, batching, and token routing Multi-GPU and distributed inference Tensor and pipeline parallelism MoE and expert routing considerations Integration and developer experience Hugging Face and OpenAI-compatible APIs Example: simple Python server invocation Production deployment patterns Cost and utilization considerations Scaling strategies and failure isolation Benchmarks, comparisons, and trade-offs vLLM vs alternatives (TensorRT‑LLM, LMDeploy, SGLang, Transformers) Common issues and operational tips Conclusion What is vLLM and when to use it vLLM is a high-performance inference engine designed to serve transformer-based LLMs with high concurrency and long context windows while keeping GPU memory usage efficient. Use vLLM when you need to serve many concurrent users or large contexts with good throughput, when you want easy integration with Hugging Face models, and when maximizing GPU utilization (through micro-batching and efficient KV caching) is a priority[4][1]. ...

December 19, 2025 · 7 min · 1473 words · martinuke0
Feedback